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Segregation and integration are distinctive features of large-scale
brain activity. Although neuroimaging studies have been unraveling
their neural correlates, how integration takes place over segregated
modules remains elusive. Central to this problem is the mechanism by
which a brain region adjusts its activity according to the influence it
receives from other regions. In this study, we explore how dynamic
connectivity between two regions affects the neural activity within a
participating region. Combining functional magnetic resonance imag-
ing (fMRI) and magnetoencephalography (MEG) in the same group of
subjects, we analyzed resting-state data from the core of the default-
mode network. We observed directed influence from the posterior
cingulate cortex (PCC) to the anterior cingulate cortex (ACC) in the
10-Hz range. This time-varying influence was associated with the
power alteration in the ACC: strong influence corresponded with a
decrease of power around 13–16 Hz and an increase of power in the
lower (1–7 Hz) and higher (30–55 Hz) ends of the spectrum. We also
found that the amplitude of the 30- to 55-Hz activity was coupled to
the phase of the 3- to 4-Hz activity in the ACC. These results charac-
terized the local spectral changes associated with network interac-
tions. The specific spectral information both highlights the functional
roles of PCC–ACC connectivity in the resting state and provides in-
sights into the dynamic relationship between local activity and cou-
pling dynamics of a network.

default-mode network | resting state | fMRI | MEG |
functional connectivity

Afundamental feature of large-scale human brain activity is
concurrent segregation and integration (1–4). Different

brain regions can be activated by subcomponents of a cognitive
process, forming distributed neural representations. These seg-
regated regions interact with each other through network
connectivity, leading to an integrated outcome that deter-
mines behavior. This dual feature sets two major paradigms in
cognitive neuroimaging (3, 5–8): one investigates the localized
activity that represents cognitive subprocesses; the other in-
vestigates the cross-regional coupling that reflects integration
across functional modules.
While the neuroimaging field advances on both topics, gaps

remain between findings. The biological basis of the integration
across segregated modules remains poorly understood. Central
to this question is the mechanism by which one region adjusts its
local activity under the influence of other regions, a necessary
step for the network to reach a downstream output. However,
existing literature has focused on either localized activity or
cross-region connectivity, but rarely the relationship between
the two.
The difficulty lies in studying connectivity and local activity at

the same time. Such an approach would require data with high
spatial and temporal resolution, which is difficult to achieve with
current imaging techniques (5, 9, 10). Recently, many in the field
have attempted to bridge these gaps. One approach is to put
sliding windows on functional magnetic resonance imaging
(fMRI) data, adding temporal information to the spatial patterns

of connectivity (for a review of the methods, see, for example,
ref. 11, but also see ref. 12). Another approach is to compare
magnetoencephalography (MEG)-based connectivity with those
measured from fMRI, verifying the identities of dynamically
interacting regions (10, 13–17). These new methods retrieve the
spatial and temporal information of a network, making it pos-
sible to study correspondent changes in both connectivity and
local activity.
Here, we investigate the relationship between cross-region

connectivity and within-region activity in the default-mode net-
work (DMN). We chose the DMN for two reasons. First, the
DMN is known to activate in the resting state (18, 19), and
resting state avoids the mixture of network- and stimulus-driven
activity. Second and most important, the DMN is an excellent
candidate for studying ongoing cognition (19, 20). Its resting-
state activity is closely associated with higher functions such as
autobiographic memory and self-referential thoughts. Therefore,
the biological meaning of the activity–connectivity association in
the DMN is within the context of cognitive processing, regardless
of the absence of a task.
We recorded fMRI and MEG data in the same group of

subjects and focused the analysis on two core regions of the
DMN (19, 20): the anterior and the posterior cingulate cortex
(ACC and PCC, respectively). We quantified short-time Granger
causality (GC) between the ACC and PCC in the MEG source
space under the guidance of fMRI. This dynamic measure
allowed us to examine within-region spectral changes of neural
activity, and at the same time, how they correspond to the change of
cross-region connectivity.

Significance

When a person is at wakeful rest, not paying particular at-
tention to the environment, his/her brain activity will not drift
into random noise. Instead, it maintains robust dynamical
structures to support ongoing cognition. Previous studies on
the resting state have focused on either connectivity features
across brain regions or local activity features within regions.
Here, we show that the interactions between regions are dy-
namic and covary with local activity. This covariation provides
insights into the neural underpinnings of ongoing cognition
that is driven by the brain’s intrinsic network interactions.
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The results characterized how interactions between brain re-
gions affect the within-region activity in a real-time manner. In
particular, we found that the influence from the PCC in one
frequency band was associated with local spectral changes in the
ACC in multiple frequency bands. Moreover, the local frequency
bands held a phase–amplitude relationship that reveals the
possible functional consequence of the PCC–ACC interactions.

Results
We first verified that GC reliably captured the ACC–PCC con-
nectivity in the MEG source space. The procedure consisted of
two steps: (i) we used functional-connectivity MRI (fcMRI) as a
guide to locate the MEG frequency range that contributed the
most to the ACC–PCC connectivity; (ii) we used that frequency
range to compute seed-based GC maps, which independently
replicated the connectivity pattern between the ACC and PCC.
Next, we investigated whether the temporal change of GC was

associated with a local power alteration of the MEG source
signal. We compared the power spectral density (PSD) between
the time periods when GC to a region was strong and when GC
was weak. For the frequency components of the source signal
that showed a PSD difference, we also tested for cross-frequency
coupling to see whether the modulated activity carried func-
tionally meaningful structures.

The 10-Hz Neural Activity as a Major Contributor to the fMRI-Based
Connectivity. We computed the temporal correlations of power
between MEG sources in the ACC and PCC as a measure of
overall MEG connectivity across time. The source signals were
first orthogonalized to remove spurious zero-lag correlation
caused by crosstalk (refs. 10 and 15, and Materials and Methods).
Narrow-band power envelopes were then extracted from the
ACC and PCC sources to compute cross-region correlations for
different frequency combinations between 1 and 56 Hz. The
strongest correlation was found with the 10-Hz power enve-
lopes (Fig. 1A), which survived the permutation test (Materials
and Methods).
We also computed fcMRI between the ACC and PCC using

the blood oxygenation level-dependent (BOLD) signal. The 10-Hz
power envelope connectivity and fMRI connectivity showed a
significant cross-subject correlation (Pearson’s r = 0.39, P < 0.04,
Fig. 1B), suggesting that individuals with stronger fcMRI also have
stronger MEG connectivity at 10 Hz. Thus, we consider the 10-Hz-
range neural activity to be a major contributor to the functional
connectivity between the ACC and PCC.

Spatially Specific GC Between the ACC and PCC in the Seed-Based
Maps. Since the highest cross-subject correlation was found
with activity near 10 Hz, we computed GC in the 10-Hz range for
each interheartbeat time segment, as a sliding-window type of
measurement for the dynamic MEG connectivity. Before testing
the association between connectivity and local activity, we
checked the spatial specificity of the GC measurement. This step
was both to verify that GC effectively captured the connectivity,
and to rule out a potential bias due to preselection of the ACC
and PCC regions in the previous analysis. To do so, we used
seed-based maps: when one region was set as seed, the GC
measurement should show large clustered values around the
other region and random small values in the rest of the cortex.
Due to technical concerns (Discussion), we used the difference

score between the from-seed and to-seed GC (Fig. 2A) instead of
the raw GC value. Positive scores were marked as “outflow” and
negative scores “inflow.” A nonparametric cluster-level test was
performed across time segments to determine the significance of
GC-flow at each vertex (Materials and Methods). Significant
vertices were marked as regions of interest (ROIs), representing
regions of large GC-flow values (Fig. 2B). ROIs were first drawn
in each subject and then overlaid across subjects to derive a
group-level estimation (Fig. 2C). For the inflow to the ACC
seed, the PCC appeared to be an ROI that sent out GC influence
in all 29 subjects. For the outflow from the PCC seed, the ACC
appeared to be an ROI that received GC influence in 28 sub-
jects. We did not find a PCC ROI in the ACC outflow map or an
ACC ROI in the PCC inflow map (Figs. S1 and S2). The results
consistently showed that the GC influence was specifically di-
rected from the PCC to the ACC.

GC-Associated Power Spectral Changes Within the ACC. The seed-
based GC maps not only verified the spatial specificity of the
ACC–PCC interactions but also suggested directional asymme-
try. Since stronger GC was directed from the PCC to the ACC
than vice versa, we examined how local activity in the ACC
changes according to GC influence from the PCC. Specifically,
we measured the intensity of PSD in the ACC under different
GC strengths. GC and PSD were estimated at each vertex of the
ACC for each interheartbeat time segment (Fig. 3A). We grou-
ped the vertices and time segments into spatiotemporal clusters

Fig. 1. MEG connectivity around 10 Hz is associated with fMRI-based
connectivity. (A) Heatmap of the temporal correlation between the
leakage-corrected power envelopes of MEG sources in the ACC and PCC.
Color represents the mean Pearson’s r scores across subjects at each
frequency pair. The black line marks significant r scores within the contour
that passed the permutation test. (B) Scatter plot of the MEG connectivity
around 10 Hz against the fcMRI. Each dot represents a subject, and the
regression line is shown in black.

Fig. 2. Seed-based maps of GC-flow in the 10-Hz range. (A) Histogram from
one subject as an example of the GC-flow between the seed and an arbitrary
vertex over the interheartbeat time segments. The mean centered at zero,
indicating no GC-flow in either direction. (B) Example from one subject il-
lustrating the significance test for the GC-flow of a PCC seed. Positive t scores
indicate outflow, and negative t scores, inflow. (C) Group-level estimation of
the significant inflow to the ACC (Left) and outflow from the PCC (Right).
Cross-subject conjunction scores are shown in color. Scores below 15 (i.e.,
consistency of less than one-half of the subjects) are not displayed. White
dots indicate the seed locations, and arrows, the flow direction.
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according to their GC values (Materials and Methods). A cluster
represented a spatiotemporal pattern that was stable in time
(>20 s) and/or robust in space (>20 adjacent vertices).
Depending on whether the data segment of a vertex belonged
to a GC cluster, the power spectrum was marked as inside or
outside cluster.
The data segments inside the clusters showed consistently less

power in the 13- to 16-Hz range, but greater power in the lower
(1–7 Hz) and higher ends (30–55 Hz) of the spectrum compared
with those outside the cluster (Fig. 3B). A complete list of all of
the difference scores and their significance can be found in Table
S1. These results provided a spectral fingerprint for the re-
lationship between the directed influence from the PCC to the
ACC and the power changes within the ACC.
Finally, we tested whether cross-frequency coupling existed

between the lower and higher ends of the spectrum. This idea
stemmed from the literature showing that, during particular
cognitive processing, the phase of a slow activity component
(typically in the theta band) can modulate the amplitude of a fast
component (typically in the gamma band) (21, 22). If this pattern
existed between the theta and gamma components found in Fig.
3B, it would provide evidence that the spectral fingerprint was
not random but carried functional information.
Following the procedure in ref. 23, we found a coupling pat-

tern between the 3- to 4-Hz and the 30- to 55-Hz components of
the ACC activity: the estimated gamma amplitude peaked
around ±π/2 of the 3- to 4-Hz phase (Fig. 3C). χ2 tests confirmed
the significance of this observation (Fig. 3D). Specifically, if
there was no coupling, the phase angles corresponding to the top
5% of the gamma amplitudes would distribute evenly over the
[−π, π] interval. By contrast, the χ2 test was found significant
(χ992 = 141.1, P < 0.01), demonstrating deviation from a uniform
distribution (Fig. 3D). No significant coupling was found for the
other lower-frequency components in the 1- to 7-Hz band.

Discussion
We investigated the relationship between dynamic connectivity
and localized neural activity in the two core regions of the DMN.
Combining fcMRI and MEG, we identified spatially specific,
directionally asymmetric GC influence from the PCC to the ACC
in the 10-Hz range. The time-varying strength of this GC influ-
ence was associated with power alterations in the ACC: strong
GC corresponded to a decrease of power around 13–16 Hz and an
increase of power in the lower (1–7 Hz) and higher (30–55 Hz)
ends of the spectrum. There was also significant coupling be-
tween the phase of the lower-frequency and the amplitude of the
higher-frequency components in the ACC. These findings high-
light an approach for studying the integration and segregation of
brain activity under a unified framework, shedding light on dy-
namic cross-region interactions in the DMN.

Functional Connectivity and Local Neural Activity May Be Interdependent.
Functional connectivity between cortical regions and localized
activity within regions have been studied in separate bodies of
literature (5–8). Here, we show that the two characteristics are
interdependent in a real-time manner. It is worth noting that this
relationship should not be interpreted as causal. It is possible
that network interactions resulted in the local power fluctuation;
it is also possible that changes in local dynamics affected the
network coupling. The current analysis cannot disambiguate the
two cases. Nonetheless, this regional activity–network interaction
association may elucidate how functional specialty is preserved
within regions that are coupled together.

Functional Connectivity Between PCC and ACC Is Dominated by the
10-Hz Oscillations. In previous studies, the search for neural cor-
relates of functional connectivity in the DMN has uncovered a
wide spectrum of oscillatory components, among which the
alpha/low-beta frequency range was the most commonly
reported (13–16, 24–27). Here, consistently, we found that the
alpha oscillation is the major contributor to ACC–PCC con-
nectivity (Fig. 1). This conclusion is not based solely on the
dominant carrier frequency observed in the power correlation
but also the cross-subject correlation between fcMRI and the
power correlation.
The subsequent results also supported this conclusion. First, the

GC analysis demonstrated that there is directed influence from the
PCC to the ACC (Fig. 2C) beyond their power cofluctuation. Also,
the ACC power–GC association in the theta and gamma bands
(Fig. 3B) indicates that not all network-related power fluctuations
contribute to the cross-region correlation. While caution must be
taken using the power envelope to measure MEG connectivity (27),
the cross-validating evidence here suggests that the 10-Hz oscilla-
tions are the major contributors to ACC–PCC interactions.

Directional GC Asymmetry Supports the Role of the PCC as a Network
Hub. We have shown that the GC influence from the PCC to the
ACC is stronger than that in the opposite direction (Fig. 2). This
asymmetry is consistent with the recent finding that the in-
formation flow from posterior to anterior brain regions is
mainly in the alpha/beta band (28). This asymmetry is also
consistent with the role of the PCC as a structural (29) and
functional (25) hub in the cortex. Especially in ref. 25, the
PCC was found to transiently coordinate the interaction be-
tween resting-state networks. Here, the directional influence
on the ACC may be part of the PCC’s coordinating activity
carried out in the DMN. If so, the associated spectral changes
in the ACC may help elucidate the neurophysiological con-
sequences of the network coordinating activity.
In the literature, theta-band activity was reported to dominate

the directed information flow from anterior to posterior regions
(28). We did not observe this theta dominance in the GC from
the ACC to the PCC. One possibility is that the interheartbeat

Fig. 3. Systematic local activity changes associated with the 10-Hz GC
fluctuation. (A) Example from one subject showing the spatiotemporal GC
clusters within the ACC. The lower plot shows the alpha-band GC from the
PCC to each vertex in the ACC across time segments. The plot above is a
magnified view showing the spatiotemporal clusters from the chosen part of
the lower plot. The vertices are arranged such that those in the clusters are
spatially consecutive in the cortical surface. (B) Power difference of the ac-
tivity inside and outside the clusters, shown as mean ± SEM across subjects.
Asterisks denote the significant deviation from zero (*P < 0.05, Bonferroni
corrected for 37 comparisons; Table S1). (C) Spline-fitted gamma amplitude
over the 3- to 4-Hz phase in the ACC showing peaks around ±π/2. Each line
represents one subject. (D) Histogram of the phase angles whose corre-
sponding gamma amplitudes ranked in the top 5%. All subjects were pooled
together. The count was standardized by dividing the total counts.
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segments contain too few theta cycles to reach the statistical
power for GC estimation. This problem may be further explored
in the future by extending the GC time periods while carefully
excluding the heartbeat artifacts.
A potential concern is that the asymmetry of influence may be

an artifact of different signal-to-noise ratios (SNRs) in the ACC
and the PCC (30). While the exact noise level is unmeasurable,
there are some observations that may alleviate this concern.
First, although the occipital cortex is known to exhibit strong
resting-state alpha oscillations, it did not show up as a consistent
ROI in the GC maps (Fig. 2C). Second, although systematic
SNR differences may also exist in the other frequency bands, no
consistent ROI was observed in the GC maps of the other fre-
quencies (Figs. S1 and S2). Third, while surface sources tend to
have a higher SNR than deep sources in MEG, the surface GC-
flow did not show systematic larger values than the deep GC-
flow (Figs. S1 and S2).

The Cross-Frequency Coupling Suggests the ACC’s Role in Cortical
Excitability Regulation. Although both being core regions of the
DMN, the ACC is functionally heterogeneous from the PCC
(31). In task-based behavioral studies, the ACC has been con-
sidered a major region related to executive functions and goal-
directed behavior (32, 33). Here, the phase–amplitude relation-
ship we found between the theta and gamma frequencies is
known as a neurophysiological reflection of cortical excitability
(22, 34–36). It seems plausible to have an executive function-
related region constantly modulated for its excitability during
the resting state, so that the brain can flexibly switch from passive
to active behavioral states. This has been proposed by work from
a theoretical perspective (34, 37), but neurophysiological evi-
dence remains scarce. Our finding may provide a test ground for
further investigations on this hypothesis.

Insight for Future Investigation on Task Data. Simultaneous EEG–

fMRI studies have reported task-introduced increases of theta/
gamma power and decreases of alpha/beta power, in corre-
spondence with the increase of BOLD activity (38). This spectral
pattern seems to mirror the GC-associated power fluctuation
shown in Fig. 3B. Given that the DMN has elevated BOLD ac-
tivity in the resting state (18, 19), this spectral pattern may reveal
a common neurophysiological correlate of increased BOLD ac-
tivity. It may be interesting to revisit some of the task data and
see whether any of the spectral changes were induced by network
interactions.
Importantly, revealing brain activity during “resting state” may

lead to a better understanding of brain activity during specific
cognitive tasks. The highly structured resting-state dynamics in-
dicate a nonflat “baseline” for various tasks. For example, the
ACC power–GC association can be observed from the same set
of subjects during episodic memory retrieval (SI Results and Fig.
S3). The power–GC association during resting state (Fig. 3B)
can provide critical information about how memory-related
processes modulate the ongoing neural dynamics (SI Results).

Technical Considerations. A common concern with MEG record-
ings has been the low SNR often seen in deep sources (39). Here,
several methodological considerations were taken to reduce the
influence of noise. First, we used a multimodal imaging approach
to validate functional connectivity. The fcMRI and the MEG
connectivity were measured from different imaging modalities.
The fact that they correlate across subjects (Fig. 1B) helps vali-
date the MEG results. Second, we used a data-driven approach
to identify connectivity between regions. The seed-based maps
did not use preselected ROIs but still identified spatially specific
connectivity between the ACC and the PCC (Fig. 2C). This was a
cross-validation of the 10-Hz-range connectivity in Fig. 1A.
Third, we used the interheartbeat data segments to reduce

heartbeat noise and provide multiple samples of GC. Suffi-
cient samples allowed us to create conjunction maps and examine
consistency across individuals, gaining greater statistical power than
using the mean values of a group result.
The choice of GC in measuring connectivity is out of the

concern for “crosstalk” (10, 40). Crosstalk refers to the spurious
zero-lag correlation among the source signals, an unavoidable
consequence of the MEG inverse solution. In the current study,
we took advantage of the fact that GC measures time-lagged
interaction between sources. Moreover, taking the difference
score of the to-seed and from-seed GC (i.e., GC-flow) helps
cancel the artifact if crosstalk affects both directions equally.
Nevertheless, we note that the zero-lag correlation can still bias
the GC measure (41, 42). Crosstalk is a special case of the ad-
ditive noise problem in GC measurement (42). Interested
readers can refer to Supporting Information for a simulated
demonstration of this issue (SI Results, Table S2, and Figs. S4
and S5). In summary, GC is affected by the level of crosstalk, but
its true value can be recovered by orthogonalizing the source
signals. Our GC result proved to be robust using orthogonalized
ACC and PCC sources (Fig. S6). Given the lack of literature on
this topic, we hope this work can bring future interest to the
related research.
Finally, we note that the “hidden-node” problem (43) inherent

to GC also applies here. The influence from the PCC to the ACC
may go through a third region that was not captured in the GC
map. Since the mapping covered all vertices in the cortex, the
hidden influence, if present, would be likely coming from sub-
cortical structures. This issue could not be resolved from the
current data due to a lack of subcortical recordings.

Materials and Methods
Subjects and the Resting-State Experiment. Twenty-nine subjects (20 females;
mean age, 21.4 y) were seated in the upright position, facing a screen with
cross hairs shown at the center. The subjects were asked to maintain fixation
on the cross hair and refrain from blinking as much as they could during the
experiments. These instructions were given in both the MEG and fMRI ses-
sions. All subjects successfully followed the instructions, and no data were
discarded due to excessive blinking. This study was approved by the in-
stitutional review board at Massachusetts General Hospital, and all subjects
gave signed informed consent.

Structural and Functional MRI Recordings. Anatomical images were acquired
on the same day as the MEG experiment for each subject (SI Materials and
Methods). FreeSurfer was used to reconstruct the cortical surface and
downsample it to 8,192 vertices. The fMRI and MEG analyses were based on
signals from the same vertices on the decimated surface. Functional re-
cordings of the BOLD signal used the same resting-state experiment setup (SI
Materials and Methods). Each subject’s BOLD data were then coregistered to
the individual’s structural MRI and underwent commonly used preprocessing
(SI Materials and Methods).

MEG Recording and Preprocessing. MEG was continuously recorded in a
magnetically shielded room with a 306-channel whole-head system at a
sampling rate of 1,037 Hz (SI Materials and Methods). All preprocessing steps
used the MNE-Python toolbox (ref. 44 and SI Materials and Methods).

Source Estimation. The gain matrix needed for source estimation was com-
puted using a single-compartment boundary element model (45). The source
time courses were estimated using a cortically constrained minimum L2-norm
estimate (MNE) (46), with noise covariance computed from empty-room
recordings on the same day. The source current density was then normal-
ized by an estimate of projected noise to generate the dynamic statistical
parametric map (dSPM) (47). The dSPM was treated as the source activity
and estimated at each time point.

Definition of the ACC and PCC Regions. The regions of the ACC and PCC for the
fcMRI andMEG power correlation analyses were defined according to a DMN
atlas from ref. 48. The DMN atlas defines labels of the ACC and PCC on the
fsaverage template brain surface (FreeSurfer 5.4). The labels were then
morphed into each subject’s native space and used as subject-specific ROIs.
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Power Correlation of the MEG Source Signal and the Permutation Test. In each
subject, the 5-min time courses of the ACC and PCC sources were bandpass
filtered into 55 narrow bands of 1-Hz width, which evenly divided up the 1- to
56-Hz interval. The filtered signals from each vertex of the ACC were paired
up with those from each vertex of the PCC. For each pair, a phase-
orthogonalized power envelope correlation was calculated using the
method in ref. 15. Envelope correlations were obtained for all 55 × 55 fre-
quency combinations, and vertex pairs of the same frequency combination
were averaged together, resulting in a 55 × 55 connectivity spectrogram for
each subject.

To test the robustness of the envelope correlation, the temporal order of
the envelopes was permuted 1,000 times, and a connectivity spectrogramwas
calculated for each cohort of permuted samples. For each frequency pair, the
veridical correlation was considered significant if its value exceeded the 95%
quantile of the 1,000 permutated correlation scores.

fMRI-Based Connectivity. Pearson’s correlation was calculated between the
BOLD time series for each ACC–PCC vertex pair, and then averaged across
vertex pairs to generate one fcMRI score for each subject.

Seed-Based MEG GC Maps. Heartbeat events were removed from the pre-
processed signal (SI Materials and Methods), resulting in ∼300 short seg-
ments of MEG data in each subject. GC maps were computed for each
interheartbeat segment between a seed chosen from the ACC/PCC and the
rest of the cortex. Five different seeds were used for each region, and the
results were averaged across the five runs. The seeds surrounded the center
of the ACC and PCC labels defined by the DMN atlas. Each seed was a cortical
region with a diameter of 1 cm.

For each time segment, source activities within the seed region were
averaged across vertices to yield the seed time series Xt. The seed was paired
with all vertices in the other region (denoted Yt), and a bivariate autore-
gressive (AR) model was fitted to each pair:

Xt =
Xp

k=1

a11,kXt−k +
Xp

k=1

a12,kYt−k + E1t , [1a]

Yt =
Xp

k=1

a21,kXt−k +
Xp

k=1

a22,kYt−k + E2t . [1b]

The ensemble mean of Xt and Yt were removed beforehand. Here, p denotes
the model order, aij,k with i, j ∈ {1,2} and k = 1, 2, . . ., p are model coeffi-
cients, and E1t and E2t are uncorrelated white noise. The model was fitted
using the Levinson–Wiggins–Robinson algorithm with a fixed model order
P = 8 for each vertex pair (SI Materials and Methods and Figs. S7 and S8).

Based on the fitted model coefficients, Geweke’s frequency-domain GC
(49) was estimated in the range of 2–45 Hz with a resolution of 1.5 Hz.
Values in the 8- to 12-Hz interval were summed to yield the alpha-band GC.
The model fitting and GC computation were done using the Python toolbox
nitime, which follows closely the procedure described by ref. 50.

Nonparametric Cluster-Level Significance Test for Defining ROIs. For each pair
of the seed–target vertex combinations, a GC difference was calculated for
each interheartbeat segment, and a t score was used to summarize the
difference over segments, which quantified the overall asymmetry of the
influences between the seed and the target vertex. The significance of the t
scores was determined by a nonparametric cluster-level test (51), which

corrected for the family-wise error through a Monte-Carlo permutation that
took into account the spatial correlation of nearby vertices. Test statistics
with a P value lower than 0.05 were considered significant. The test was
carried out in each subject’s native space, and the results were morphed into
the fsaverage space for group average and conjunction analysis.

Spatiotemporal Clustering of the GC Values. Spatiotemporal clusters of alpha-
band GC values over adjacent vertices and time segments were identified. A
threshold was set to two times the interquartile distance above the median
across all vertices and time segments. Above-threshold GC values from more
than 20 adjacent vertices and/or time segments were marked as spatio-
temporal clusters. The number 20 was chosen so that the marked clusters
were extensive enough in space (20 vertices covered an area ≈2 cm in di-
ameter) or lasted long enough in time (20 time segments covered ≈20 s),
which indicated robust GC influence that was unlikely driven by transient
random fluctuations of noise in the signal.

Comparison of Power Inside and Outside the GC Clusters. The PSD of the
vertices and time segments inside the spatiotemporal clusters were compared
with those outside the clusters. The test followed ref. 52. Briefly, the PSD S(f)
was averaged across vertices and time segments and transformed to obtain
Gaussianity:

xðfÞ= log½SðfÞ�−ψðmÞ+ lnðmÞ, [2]

where m equals one-half the number of Slepian sequences multiplied by the
number of samples, and ψ is the digamma function. Once the mean power
spectra x1(f) and x2(f) of two different groups were computed, the PSD-
difference score was calculated as follows:

ΔxðfÞ= x1ðfÞ− x2ðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ ′ðm1Þ+ψ ′ðm2Þ

p , [3]

where m1 and m2 are the number of samples averaged in x1(f) and x2(f), and
ψ ′ is the trigamma function. ΔxðfÞ assimilates the statistic of a paired t test in
representing the difference between x1(f) and x2(f).

Estimation of the Cross-Frequency Phase–Amplitude Coupling. The entire time
course (5 min) of the source activity of each seed was filtered into six narrow-
band lower-frequency components (1–2, 2–3, 3–4, 4–5, 5–6, and 6–7 Hz). The
phase angle at each time point was obtained via Hilbert transform. The
amplitudes of the gamma band (30–55 Hz) from the same signal were
extracted across the same time points. Thus, the lower-frequency phase and
gamma-frequency amplitude were paired across time. The coupling was
estimated following a spline-fitting procedure (23). Briefly, the gamma
amplitude was modeled as a function of the lower-frequency phase over
100 equally spaced phase bins dividing the [−π, π] interval. The function was
fitted with cardinal spline basis using 20 control points that evenly divided
the phase interval. The estimated function represents the distribution of
gamma amplitudes over [−π, π].
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